Neurolmage 92 (2014) 312-321

journal homepage: www.elsevier.com/locate/ynimg

Contents lists available at ScienceDirect

Neurolmage

Compressed sensing fMRI using gradient-recalled echo and

EPI sequences

Xiaopeng Zong

a,ek*k,1

@ CrossMark

, Juyoung Lee >!, Alexander John Poplawsky ?, Seong-Gi Kim *“¢, Jong Chul Ye >*

2 Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA

b Bio-Imaging & Signal Processing Lab., Korea Advanced Institute of Science & Technology (KAIST), 373-1 Guseong-Dong, Yuseong-Gu, Daejon 305-701, Republic of Korea
¢ Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746, Republic of Korea

4 Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea

€ Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

ARTICLE INFO

Article history:
Accepted 24 January 2014
Available online 2 February 2014

Keywords:
Compressed sensing
fMRI

k-t FOCUSS

Olfactory bulb
Somatosensory cortex
BOLD

CBV

High magnetic field

ABSTRACT

Compressed sensing (CS) may be useful for accelerating data acquisitions in high-resolution fMRI. However, due
to the inherent slow temporal dynamics of the hemodynamic signals and concerns of potential statistical power
loss, the CS approach for fMRI (CS—-fMRI) has not been extensively investigated. To evaluate the utility of CS in
fMRI application, we systematically investigated the properties of CS-fMRI using computer simulations and
in vivo experiments of rat forepaw sensory and odor stimulations with gradient-recalled echo (GRE) and echo
planar imaging (EPI) sequences. Various undersampling patterns along the phase-encoding direction were stud-
ied and k-t FOCUSS was used as the CS reconstruction algorithm, which exploits the temporal redundancy of im-
ages. Functional sensitivity, specificity, and time courses were compared between fully-sampled and CS-fMRI
with reduction factors of 2 and 4. CS-fMRI with GRE, but not with EPI, improves the statistical sensitivity for
activation detection over the fully sampled data when the ratio of the fMRI signal change to noise is low. CS im-
proves the temporal resolution and reduces temporal noise correlations. While CS reduces the functional re-
sponse amplitudes, the noise variance is also reduced to make the overall activation detection more sensitive.

Consequently, CS is a valuable fMRI acceleration approach, especially for GRE fMRI studies.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Compressed sensing (CS) theory (Candes et al., 2006; Donoho,
2006) has been gathering interest in the MR community due to its po-
tential for accelerated image acquisition without compromising image
quality. Specifically, CS theory informs us that an accurate reconstruc-
tion from undersampled measurements below the Nyquist sampling
limit is possible using a nonlinear reconstruction algorithm if the
image is sparse in some transform domain and the sensing matrix is suf-
ficiently incoherent. In many dynamic imaging applications, such as car-
diac cine MRI, various compressed sensing algorithms have been
successfully implemented by exploiting the temporal redundancies of
images (Feng et al., 2011; Hu et al., 2012; Jung and Ye, 2010; Jung
et al.,, 2007, 2009, 2010; Lingala et al., 2011; Lustig et al., 2006; Usman
etal,2011; Zhao et al,, 2010). A similar CS approach is potentially useful
for high-resolution fMRI to improve the temporal resolution since such
temporal redundancies exist in fMRI data (Jung and Ye, 2009; Lu and
Vaswani, 2011; Nguyen and Glover, 2013).
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In fMRI studies with a relatively low spatial resolution (e.g. ~3 x 3 x
3 mm? in human brain at 3 T), whole brain images can be acquired by
the single-shot echo planar imaging technique within 2 s. Given the in-
herently slow hemodynamic responses, the CS approach may not be
necessary for routine low resolution human fMRI studies, but may be
useful for studies requiring long image repetition times. One example
is to acquire high-resolution fMRI with multi-shot EPI sequences,
which increase the repetition time (TR) by a factor equal to the addi-
tional number of shots. Another obvious case is conventional gradient-
recalled echo (GRE) fMRI studies (Frahm et al., 1993; Kida et al., 2002;
Ogawa et al., 1992). The GRE approach is often used for imaging highly
field-inhomogeneous regions, especially in small animals (Xu et al.,
2000), where the EPI data acquisition induces image distortions and in-
tensity losses. In both cases, acceleration of data acquisition becomes
necessary to ensure sufficient temporal resolution for measuring the he-
modynamic responses (Holland et al., 2013; Jeromin et al., 2012; Jung
and Ye, 2009).

There have been potential concerns about the usefulness of CS-fMRL
First, compared to other dynamic imaging applications like cardiac
imaging, the minute hemodynamic responses measured by fMRI
may not be effectively recovered from noises after CS reconstruction.
Another important concern for CS-fMRI comes from the potential loss
of statistical efficiency for detecting activation-induced responses be-
cause the accelerated acquisition reduces the number of k-space
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samples and, thus, reduces the signal to noise ratio (SNR). Moreover,
nonlinear CS reconstruction that exploits the temporal redundancies
could introduce some artificial temporal correlations that may result
in the loss of degrees of freedom and, consequently, reduce the sensitiv-
ity of the activation detection. Therefore, these issues should be system-
atically studied.

Most of the existing CS—-fMRI studies have been conducted with
synthesized experiments where fully sampled k-space data were
retrospectively down-sampled, partially because of the difficulty in
implementing accelerated fMRI pulse sequences that are free of artifacts
(Jeromin et al., 2012). However, it is very difficult to determine pulse
sequence-dependent artifacts as well as potential advantages of
improved temporal resolutions using retrospective analyses. More im-
portantly, the synthesized experiments do not fully reflect the true
physical phenomenon of accelerated fMRI acquisition. Therefore, to ver-
ify the usefulness of CS for fMRI, systematic studies using real k-space
undersampling sequences must be conducted.

Therefore, in this paper, we provide comprehensive studies of
CS—fMRI using computer simulation, in vivo experiments, and rigorous
statistical analysis. For simulation, BOLD and cerebral blood volume
(CBV) fMRI data were synthesized by adding noise and modulating
signal changes in certain regions of the brain with realistic response
functions, then the k-space data was under-sampled. For in vivo exper-
iments, fully sampled fMRI and CS-fMRI with reduction factors of 2 or 4
were acquired using 2-D GRE and EPI sequences during forepaw and
odor stimulations in anesthetized rats at 9.4 T. To reconstruct CS data,
we used the k-t FOCUSS algorithm to take advantage of the temporal
image redundancies (Feng et al., 2011; Jung and Ye, 2010; Jung et al.,
2007, 2010; Lustig et al., 2006). For rigorous statistical analysis that is
compatible with human fMRI analysis, a general linear model (GLM)
framework with restricted maximum likelihood (ReML) covariance es-
timation (Friston et al., 2011; Graser et al., 1987; Harville, 1977;
Kenward and Roger, 1997; Searle, 1979) was used to take into account
the potential temporal correlation confounds introduced by CS recon-
struction. The functional image quality and sensitivity for activation de-
tection were investigated and compared to the fully sampled data. We
found that CS-fMRI rather reduces the temporal correlation in residual
noise, and improves the sensitivity for activation detection when the
ratio of fMRI signal change to noise is low. From these analyses, the
potential for improving the fMRI activation detection using CS is
demonstrated.

Theory
Dynamic CS using k-t FOCUSS

To enable compressed sensing reconstruction, three conditions must
be satisfied. First, the unknown signal should be sparse or compressible
in some domain. When the fMRI hemodynamic response is periodic,
such as in periodic block-designed studies in which several trials are
presented within a single scan, FT is expected to be an effective
sparsifying transform. However, in rapid event-related (ER) or single-
trial block-designed scans, no periodicity is present in the time course
and a data-driven transform such as the Karhunen-Loeve transform
(KLT) is effective at sparsifying the signal (Jain, 1989). In this case, the
optimal transform is iteratively learned from the data using a fast FT
as the initial transform. Thus, both FT and KLT approaches were used
and compared in this paper.

Second, CS requires an incoherent sampling pattern. A proper choice
of the probability distribution for k-space sampling is critical in achiev-
ing optimal reconstruction. Thus, various sampling patterns that can
minimize the coherent aliasing patterns were examined.

Third, CS requires nonlinear algorithms to recover sparse signal
components. We used one of the successful dynamic CS algorithms
called k-t FOCUSS, whose details can be found in Jung et al., (2009).

Statistical analysis

To determine activation voxels, the GLM is commonly used with a
statistic test such as the t- or F-statistics. Here, the serial correlation
across the temporal frames should be taken into consideration, since it
directly affects the statistical efficiency. More specifically, in the GLM,
the estimation error term for the time series is assumed to have a nor-
mal distribution:

£~ N(O,UZV) (1)

where 0? is a voxel-dependent variance component and V is the
serial correlation matrix that is common across all voxels. In SPM, V is
estimated in a parametric form (Friston et al., 2011) as:

V=31 AQ 2)

where Q; is the known basis for covariance structure and A; is the esti-
mated weighting parameters using the ReML estimation framework,
which are obtained by assuming an autoregressive (AR) model that is
effective at capturing the temporal dynamics of the fMRI signal
(Friston et al., 2011). The estimation of V was done by pooling all voxels,
but 0 was determined using ReML on a voxel-by-voxel basis. Note that
the effective degrees of freedom (EDF) becomes larger when less serial
correlations are present, and a larger EDF lowers the threshold values to
make the statistical testing more sensitive. Therefore, it is important to
investigate the temporal correlation structure represented in V and its
change due to CS reconstruction in fIVIRL

Methods
Overview

The usefulness of CS fMRI may depend on the activation spatial ex-
tent relative to the imaged area, hemodynamic response function, par-
adigm design, sparse sampling scheme, and reconstruction algorithm.
Thus, we chose two stimulation conditions (a focal activation site in
the primary somatosensory cortex (S1) during forepaw stimulation
and large, broader activation regions in the olfactory bulb (OB) during
strong odor stimulation), two different pulse sequences (GRE and
EPI), multiple sampling patterns with the reduction factors (R) of 2
and 4, two paradigms (single-trial and periodic block designs), and
two sparsifying transforms (FT and KLT) in k-t FOCUSS reconstruction.

k-Space undersampling patterns along the phase-encoding direction

It is likely that the optimal sampling pattern depends on the spatial
extent of the activated region. For example, denser sampling of central
k-space lines might work better in studies with a larger activation
area since the spatial Fourier transform of the activated area would
have larger low frequency components. Preferential sampling of the
central k-space lines might also be beneficial since most image intensi-
ties reside in the low k-space region. In 2D imaging, randomness was
only present along the phase encoding (PE) direction. A full sampling
pattern and two undersampling patterns are displayed in Fig. 1. Three
undersampling patterns in our study are as follows.

Gaussian + k, = 0 line (Gaussian)

The undersampling pattern in the top panels in Figs. 1B and 1C al-
ways samples the k, = 0 line and randomly samples the remaining
lines according to a Gaussian probability distribution, A - exp(—n3/
20?), with standard deviation ¢ = 0.25N,, where Ny, is the number of
PE steps and n, is the k-space line index ranging from —N,/2 + 1 to
Ny. The scaling factor A was adjusted so that the desired reduction factor
was achieved. This pattern is denoted as Gaussian.
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(B)R=2
Gaussian

(C)R=4

Gaussian

Fig. 1. Different sampling patterns for simulations and experiments. (A) Fully sampled (R = 1), (B) undersampled along the PE direction with a reduction factor (R) of 2. The sampling
probability follows a Gaussian distribution with sampling of ky = 0 (Gaussian) (top panel) or is constant with the sampling of 6 central lines (Rand + C6) (bottom panel). (C) Same

undersampling patterns as in (B) but with R of 4.

Random + 6 low k-space lines (rand + C6)

The undersampling pattern in the bottom panels in Figs. 1B and C al-
ways samples six central k-space lines corresponding to 5-10% of the
128 and 64 lines in full k-space, and randomly selects the remaining
lines. This pattern is denoted as Rand + C6.

Random (rand)

A third undersampling pattern, not shown in Fig. 1, is to randomly
sample ny, with a constant probability over the whole n, range. This pat-
tern is denoted as Rand.

These undersampling patterns were re-generated for each image in
repeated acquisitions. Computer simulations were first carried out to
examine the performance of the three possible undersampling patterns
in fMRI of S1 and OB, and in vivo experiments were performed with
Gaussian and Rand + C6 patterns. When necessary, the reduction factor
was reported by a number within parentheses following the pattern
name.

Stimulation paradigms

For simplicity, the number of images and the TR reported in this sec-
tion refer to those in the fully sampled case. To compare CS and fully
sampled data, both scans have the same scan time and stimulation pat-
tern while the numbers of images are different. For example, for CS fMRI
with R of 4, the number of images and the TR are 4 times and one fourth
of the fully sampled case, respectively. For the periodic block-designed
paradigm, each scan consists of 5 electrical stimulation trials, in which
each trial consisted of 4 controls, 6 stimulations, and 20 control fully-
sampled images with a TR of 1.92 s. For the single-trial block-designed
paradigm, each scan consists of a single trial of 15 controls, 8 stimula-
tions, and 15 control fully-sampled images with a TR of 8 s. During the
stimulation periods, an odor of amyl-acetate was delivered to the ani-
mals. The block-designed paradigms are illustrated in Fig. 1S.

Computer simulations

We first carried out computer simulations with the above stimula-
tion paradigms to evaluate the dependence of the k-t FOCUSS perfor-
mance on the k-space sampling pattern, spatial activation extent and
temporal response shape. To evaluate the variability of the simulation
results, the simulation was repeated 6 times with identical noise

distributions. In each simulation, a k-space dataset was generated in
the following four steps.

First, image series was generated by replicating a complex-valued,
single-slice seed image. The seed images were taken from the S1 and
OB fMRI studies (see later) with matrix size = 64 x 64, and were as-
sumed to have a TR = 0.48 s and 2 s in S1 and OB studies, respectively,
which are equal to the experimental TR values with R = 4.

Second, the magnitudes of voxels within an activation region of in-
terest (ROI) were modulated according to the hemodynamic response
functions. The activation ROIs in S1 and OB (see contours in Figs. 2(A)
and (B)) were defined based on the activation maps obtained in real ex-
periments. The response functions were obtained by convoluting the
stimulation patterns (on = 1 and off = 0) with canonical impulse re-
sponse functions; gamma function in S1 and a single exponential func-
tion in OB. The resulting peak responses were assumed to be 1.5%
and —8% in S1 and OB, respectively, as shown in Fig. 1S.

Third, white noise was added to all voxels. The real and imaginary
parts of the noise followed an identical Gaussian distribution for all
voxels. Five noise levels were chosen with a different width for the
noise distributions, resulting in the mean peak fMRI signal change to
noise ratios (CNR) of 2.0, 1.5, 1.0, 0.5, and 0.3 in the activated S1 and
OB ROIs.

Fourth, the fully sampled data were simulated by retaining one of
every four images in the series. For undersampled data, the image series
were Fourier transformed to the k-space, randomly undersampled
along PE with R = 4 according to the Gaussian, Rand + C6, and Rand
patterns, and then reconstructed with k-t FOCUSS. The PE direction is
assumed to be along the dorsal-ventral direction.

In vivo fMRI experiments

BOLD and CBV-weighted fMRI were carried out for S1 and OB activa-
tion studies, respectively, to evaluate the performance of in vivo CS-
fMRI applications.

Animal preparation and stimulation

Eight male Sprague-Dawley rats weighing 240-450 g (Charles River
Laboratories, Wilmington, MA, USA) were studied with approval by the
University of Pittsburgh Animal Care and Use Committee; three for so-
matosensory cortex BOLD fMRI studies and five for olfactory bulb
CBV-weighted fMRI. Animals were anesthetized with a-chloralose and
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(A)Somatosensory
CNR=2.0 1.5 1.0 0.5 0.3

W S N o

Gaussian [fL M M m# W

(B) Olfactory Bulb
2.0 1.5 1.0 0.5 0.3

t-value

Fig. 2. Statistical t-value maps (p < 0.01) of S1 and OB calculated from the simulated block-designed fMRI data with different CNR levels. Different rows correspond to different sampling

patterns. Green contour: ROI containing the true activation. Color bar: t-value.

urethane during the two studies, respectively. The detailed animal prep-
aration procedure can be found in Poplawsky and Kim (2014) and Zong
et al. (2012). For somatosensory cortex fMRI, the stimulation consists of
electric current with amplitude = 1.4 mA, pulse duration = 333 ps, and
repetition rate = 3 Hz delivered to the left forepaw. For olfactory bulb
fMRI, odors of 5% amyl acetate in mineral oil and 100% mineral oil
served as the stimulation and baseline control, respectively.

Data acquisition

All MRI experiments were performed on a 9.4 T/31 cm magnet
equipped with an actively shielded 12-cm gradient set interfaced to a
DirectDrive 2 console (Agilent Santa Clara, CA, USA). Single-loop surface
coils with inner diameters of 2 cm and 1 cm were used in forepaw and
odor stimulation studies, respectively. For the electrical stimulation
study, the coil was placed above the skull near S1; while, for the odor
stimulation study, the coil was dorsal to OB.

The fMRI acquisition parameters are summarized in Table 1. Specif-
ically, BOLD fMRI responses to forepaw stimulation were measured
with GRE and gradient-echo EPI sequences (#1-#2), while CBV fMRI re-
sponses to odor stimulation were measured with GRE (#3) only, since
EPI in OB results in severe image distortion and signal dropout due to
the presence of large By inhomogeneities. Specific acquisition and ex-
perimental parameters are described as follows:

1. The GRE sequence for S1 BOLD-fMRI had TE = 20 ms, and the time
for acquiring one k-space line = 30 ms. Fully sampled data and CS
data with R = 2 and R = 4 were acquired.

Table 1
Summary of fMRI experimental parameters.

Forepaw stimulation Odor stimulation

#1. GRE #2. EPI #3. GRE

Matrix size 64 x 64 x 1 128 x 128 x 2 64 x 64 x 9

FOV 20 x 20 x 2 mm’® 30 x 30 x 4 mm® 7 x 7 x 45 mm?

Image TR 192s(R=1) 2 s (R = 1; 2 shots); 8s(R=1)
096s (R=2) 1 s (R =2;1shot) 2s(R=4)
048 s (R =4)

Sampling Full (3), Full (3), Full (5),

pattern® Gaussian (3), Gaussian (3), Gaussian (2),

Rand + C6 (3) Rand + C6 (3) Rand + C6 (5)

Paradigm Periodic block Periodic block Single-trial block

¢ The numbers after pattern names are the number of animals scanned.

2. High-resolution S1 BOLD-fMRI with the EPI sequence was performed
with spectral width = 278 kHz. Two-shot fully sampled data (R=1)
and single-shot CS data with R = 2 were alternatively acquired. The
echo time was 20 ms for full sampling, while for undersampling, due
to the random skipping of some k-space lines, the echo time (time of
ky = 0) had a mean of 20 ms, but varied with a standard deviation of
1-1.2 ms between images. For all EPI scans, a reference scan was ac-
quired at the beginning of each scan with the same sequence but
with the PE gradient turned off to partially correct for the phase in-
consistency between the odd and even echoes. The correction was
performed on a point-by-point basis after Fourier transform along
the readout direction (Bruder et al., 1992).

3. High-resolution CBV-weighted OB GRE fMRI data were obtained
after the intravenous injection of 15 mg Fe/kg Feraheme (AMAG
Pharmaceuticals, Inc., MA) with TE = 8 ms and time for acquiring
one k-space line for all slices = 125 ms. Fully sampled scans and CS
scans with R = 4 were acquired.

Data analysis

All CS data were reconstructed with k-t FOCUSS. Then, the t- and F-
statistics were calculated within the GLM framework using SPM8
(Wellcome Trust Centre for Neuroimaging, London, UK) software. A sig-
nificance level of p < 0.01 was used to define activated voxels.

CS data processing with k-t FOCUSS

To reconstruct the under-sampled simulated and experimental fMRI
data, k-t FOCUSS with temporal FT and KLT was used. Parameter defini-
tions can be found in Jung et al. (2009). Parameters for k-t FOCUSS with
FT and KLT were: FOCUSS iteration number = 2, iteration number of
conjugate gradient = 60, weighting matrix update power y = 0.5,
and regularization factor N = 0.01. For k-t FOCUSS with KLT, the initial
KLT matrix was calculated from images reconstructed by k-t FOCUSS
with FT. After the reconstruction was finished, the KLT matrix was up-
dated. The reconstruction and matrix updates were repeated three
times. The iteration numbers were chosen empirically to ensure conver-
gence and to achieve close-to-optimal activation maps. Before the CS re-
construction, the average of acquired k-space data across all of the
image frames was subtracted from the raw data. After the reconstruc-
tion, the averaged images were added back to the reconstructed images
at each time point (Jung et al., 2009).
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GLM analysis

The GLM analysis of simulated data was carried out with the same
reference response functions used for generating the simulated data.
For the periodic block-designed scans in S1, the GLM analysis was per-
formed for each scan. For the single-trial block-designed OB scans, the
GLM analysis was performed on three concatenated scans. The covari-
ance structure in the noise was estimated by the “spm_ar_reml.m” func-
tion in SPM8 which provides an estimate of the AR coefficient for the
residual temporal correlation. The six simulated data sets were analyzed
individually and the results averaged.

For the GLM analysis of the experimental data, we used reference re-
sponse functions by convoluting canonical IRFs with the stimulation
patterns. For S1, the IRF was generated with the “spm_hrf.m” in SPM
with an onset delay of 1.3 s (Hillman et al., 2007). For OB, the IRF was
given by f(t) = exp(—t/7), with 7 = 22 5. In S1 fMRI, each scan was an-
alyzed separately. In OB fMRI studies, three consecutive scans with the
same sampling pattern were concatenated in each animal, and multiple
GLM analyses (each with three concatenated scans) were performed for
each pattern. The design matrix consisted of a column of reference re-
sponses and two columns modeling constant and linearly drifting base-
lines. Separate baseline columns were used for different scans to
account for possible baseline image intensity changes across scans.
The covariance structures of the noise in all analyses were estimated
by the function “spm_reml.m” in SPM8. In addition, for two animals
with 9 fully sampled scans, all scans were concatenated for GLM analy-
sis in order to obtain activation maps with higher sensitivity. Such full
sampling maps can serve as a better reference for evaluating the activa-
tion areas observed in the CS-fMRI maps.

ROC analysis of simulated data

Receiver operator curves (ROC) of true positive fraction (TPF) versus
false positive fraction (FPF) were calculated by varying the |t|-value
threshold in defining activated regions. The TPF was calculated as the
fraction of voxels above the threshold within the true activation ROI,
while the FPF was calculated as the fraction of voxels above the thresh-
old within a non-activation ROL In order to consider the possible pres-
ence of increased false positive activations near the site of true
activations due to spatial smoothing that may be introduced during
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the reconstruction process, the non-activation ROI was defined as
one-voxel-thick band immediately surrounding the true activation
ROL. Then, areas under the ROC (AUR) were calculated.

ROI-based analyses

In the simulation, the ROI was defined as the assumed true activation
area in both S1 and OB data. For S1 fMRI experiments, the ROI was de-
fined as the cluster of voxels with p < 0.01 and positive t-values in the
expected S1 area contralateral to the stimulated forepaw in one fully
sampled scan. For the OB experiments, the ROI was defined as voxels
within OB with p < 0.01 and positive t-values on the CS fMRI maps re-
constructed with k-t FOCUSS with KLT, since the fully sampled maps
have low sensitivity. ROI-averaged time courses were calculated for the
block-designed simulated and experimental data to examine the effects
of CS reconstruction on the temporal characteristics of the response.
Also, the average peak intensity, noise level and mean t-value were com-
puted from all voxels within each ROI. Voxel-wise noise levels were cal-
culated as temporal standard deviations in the baseline images (0-8 s
and 40-60 s for S1 and 0-120 s and 256-304 s for OB in each trial).
The mean noise was calculated by averaging across scans and animals.

Results
Computer simulations

Activation maps

Fig. 2 displays the t-value maps calculated from the GLM analysis of
the simulated fMRI data. All CS data were simulated with R = 4. At a
CNR of 1 or above, clear and strong activations are detected in almost
all voxels within the true activation RO, regardless of the sampling pat-
tern and sparsifying transform. At CNR of 0.3 and 0.5, the maps with
Gaussian and Rand + C6 sampling patterns contain more activated
voxels than those with Rand and full sampling. No obvious increase of
false positive rates in the voxels surrounding the true activation ROI
was observed, suggesting that no spatial smoothing was introduced
during the reconstruction process. No noticeable difference is present
between the maps reconstructed with KLT and FT (Fig. 2S). Therefore,
only KLT maps are displayed in Fig. 2.

(A) Somatosensory (B) Olfactory Bulb
5 CNR=2.0 : 0.3 2.0 0.3
0 0 Aty
B ) [-\ ) //‘v‘ . /’ . \ //"’"
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Fig. 3. Mean fMRI responses in the truly activated ROI in the simulated fMRI data with CNR = 2.0 and 0.3. (A) S1 (first and second columns) and (B) OB data (third and fourth columns)
were averaged over 30 and 18 trials, respectively, for four k-space sampling patterns. Patterns in rows 1-4: full, Gaussian, Rand + C6, and Rand. The CS data were reconstructed by k-t

FOCUSS with KLT.
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Fig. 4. Baseline noise levels (A-B) and areas under the receiver operator curves for activation detection (C-D) in simulated block-designed data with different CNRs and four sampling
patterns (different colors). (A) and (C) for S1 and (B) and (D) for OB. The CS data were reconstructed by k-t FOCUSS with KLT.

Time courses and noise characteristics

Fig. 3 shows time courses from the true activation ROI in the simu-
lated data. Time courses appear very similar between CS data recon-
structed with FT (data not shown) and KLT. While the response

Rat 1

Rat 2

Full R=2

shapes from the undersampled data with R = 4 closely match those
of the fully sampled ones, their peak heights were reduced, depending
on the sampling pattern and CNR. The reduction is the largest for ran-
dom sampling and the least for Rand + C6, consistent with higher

R=4

Fig. 5. Experimental statistical t-value maps of two rats responding to forepaw stimulation using block-designed GRE fMRI with different sampling patterns and acceleration factors. Color
functional maps were overlaid on baseline GRE images. Images were reconstructed by using k-t FOCUSS with FT and KLT. Note that the number of spuriously activated voxels is reduced

with KLT.
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Fig. 6. Experimental statistical t-value maps of two rats responding to amyl acetate odor stimulation using experimental block-designed GRE fMRI with full sampling and undersampling of
R of 4. Color functional maps were overlaid on T,-weighted images. The white arrows indicate areas with false activation and opposite signal change. Undersampled images were recon-

structed with k-t FOCUSS with KLT.

sampling density of low k-space lines in the latter. On the other hand,
the noise level is reduced in the CS data as shown in Fig. 4(A) and (B).
Note that the noise levels are different between the OB and S1 at the
same CNR because of the different peak response amplitudes. The
ReML analysis of the temporal noise suggests that k-t FOCUSS did not
introduce false temporal correlations into the reconstructed images.
The AR coefficients estimated for all GLM analyses were very small
(~0.02) for all sampling patterns, noise levels, and sparsifying trans-
forms, and did not differ between the fully sampled and undersampled
cases. For the fully sampled images, no temporal correlation is expected
since white noise was added to the data.

ROC analysis

To assess the sensitivity of CS fMRI, AUR for the simulated S1 and OB
data are displayed in Fig. 4(C) and (D). A higher AUR indicates higher
sensitivity at the same false positive rates. At the highest CNR, perfor-
mances of the different sampling patterns appear similar. However, as
the CNR decreases, the Gaussian and Rand + C6 patterns provide higher
sensitivities than the Rand and full sampling patterns. The AURs for the
Rand + C6 pattern are either similar to or greater than those for the
Gaussian pattern in most cases, suggesting that sampling of several
low ky lines is more beneficial than sampling a single line at ky, = 0.

Since the Rand + C6 and Gaussian patterns provide better sensitivity
in both S1 and OB data than the Rand pattern, only these two
undersampling patterns were used in the actual experiments.

In vivo block-designed experiments with the GRE sequence

Robust activation in S1 by forepaw stimulation is detected in both
fully sampled and CS scans as shown in Fig. 5 in two representative
rats. In general, there is an increase in the t-values when the reduction
factor is increased, while the number of activated voxels remains simi-
lar. Compared to the fully sampled fMRI maps, some CS functional
maps show increased numbers of false activations outside of S1,
which appear to be reduced for the KLT reconstruction.

Fig. 6 displays representative thresholded t-value maps responding
to strong odor stimulation. The CS fMRI maps show a remarkable in-
crease in the number of activated voxels compared to the fully sampled
fMRI maps, even when comparing to the fully sampled maps with
three times the number of concatenated trials. Nevertheless, the activa-
tion centers with high t-values co-localize well between the 3-trial
CS—fMRI maps and the 9-trial fully sampled maps. Due to the increased
sensitivity with undersampling, broad activation surrounding the acti-
vation centers in the middle layers of the OB is observed, consistent

Table 2
Percent signal change, noise level, the number of activated voxels, and t-value in block-designed S1 and OB fMRI obtained with the GRE sequence®.
Area Sampling pattern Percent change Noise level # of active voxels t-Value
Positive only Positive + negative
S1 Full 6.5 4+ 2.2% 54 + 04% 51413 69 + 17 48 +£ 10
R=2 Gaussian 41 + 1.3% 5.1 £+ 0.5% 53 + 11 80 + 43 51+ 038
Rand + C6 334+£12% 5.0+ 0.3% 59 +8 90 + 32 51 +£05
R=4 Gaussian 2.2 4+ 0.5% 3.8 + 04% 50 4+ 11 95 4 28 54 +£ 06
Rand + C6 2.1 4+ 06% 4.1 4+ 04% 77 4+ 18 117 £ 33 56 + 06
OB Full —42 + 05% 145 + 2.8% 1433 + 351 1519 + 370 31+02
R=14 Gaussian —36 4+ 03% 103 + 1.4% 3985 + 489 4442 + 71 39+03
Rand + C6 —4.1 4+ 04% 9.8 + 2.4% 5113 £ 717 5451 £ 751 49408

@ Percent change, noise level, and t-value were obtained from the ROI, while # of activated voxels were calculated from entire images. “Positive only” and “Positive + negative” refer to
the sign of t values of the activated voxels (p < 0.01). Results in S1 were first obtained from each scan and then averaged across 6 scans (n = 6). Results in OB with Rand + C6 and full
patterns were first obtained from GLM analysis of 3 concatenated scans and then averaged across different concatenated sets (n = 8). Results in OB with Gaussian sampling were first
obtained from GLM analysis of 3 concatenated scans and then averaged across different concatenated sets (n = 4). The errors are standard deviations.
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Fig. 7. Temporal autocorrelation functions of the reconstructed time series with various
sampling patterns and sampling rates for averaged, block-designed, GRE S1 fMRI data.
Only results for k-t FOCUSS with KLT are shown here, since k-t FOCUSS with FT produced
similar results.

with earlier glucose uptake measurements (Johnson et al., 1998; Sharp
etal,, 1977) and our previous fMRI studies with extensive signal averag-
ing (Poplawsky and Kim, 2014). In some rats, false activation with op-
posite signal change was observed in the CS-fMRI maps, as indicated
by the white arrows in Fig. 6. To study the temporal characteristics of
the functional responses measured by CS-fMRI, the group-averaged re-
sponse time courses were obtained from the S1 and OB activation ROIs.
Consistent with the simulation results, the CS data had reduced re-
sponse amplitudes and a greater reduction was observed at R = 4 com-
pared to R = 2 (data not shown).

The response amplitude, voxel-wise noise level, number of active
voxels, and mean t-value are compared for S1 and OB studies. The
group-averaged values are given in Table 2. The CNR in S1 and OB
block-designed experiments was found to be 1.2 and 0.3, respectively,
in the fully sampled data. When R increases, both the response ampli-
tude and noise level decrease as seen in the simulation data (Figs. 3
and 4A-B). While the numbers of activated voxels are similar across re-
duction factors in S1, CS greatly increases the number of activated
voxels in OB compared to the fully sampled data. These differential sen-
sitivities in CS—fMRI can be partly explained by the CNR difference in S1
and OB data, which is consistent with simulation data (Figs. 4C-D). Fur-
thermore, the average t-values within the ROl increases at higher reduc-
tion factor in both S1 and OB, also consistent with simulation.

To confirm that k-t FOCUSS did not introduce temporal noise corre-
lations, the autocorrelation functions were estimated using the SPM
procedure (V in Eq. (2)) for the block-designed S1 fMRI data (Fig. 7).
Note that the TR is 1.92 s, 0.96 s, and 0.48 s for R = 1, 2, and 4, respec-
tively. The autocorrelation function for R = 4 is concentrated mostly
around zero, suggesting that highly accelerated fMRI acquisition re-
duces temporal correlations.

Table 3
Percent signal change, noise level, and the number of activated voxels in high-resolution
S1 fMRI obtained with the EPI sequence®.

Percent change Noise level # of activated pixels

96 + 34
75 + 24

Full 39+ 1.3%
R=2 32 +0.7%

1.1 +£ 0.5%
5.5 + 1.0%

@ Results were first obtained from each scan and then averaged across 9 scans (n = 9).
The errors are standard deviations.

In vivo block-designed experiments with 2D-EPI

Fig. 8 shows activation maps obtained from fully sampled, two-shot
data and undersampled, one-shot data. Despite the sensitivity of EPI
to field inhomogeneities and off-resonance artifacts, the images recon-
structed from undersampled EPI data have similar artifact levels as the
fully sampled two-shot data (see background gray images). However,
the activation maps calculated from the CS data have a reduced number
of activated voxels, in contrast to those with the GRE sequence. The
group-averaged mean response amplitude of the activated voxels,
noise levels, and number of active voxels are listed in Table 3 for full
and Rand + C6 (R = 2) sampling patterns. There is a large increase in
noise levels when undersampling is applied in the EPI sequence, which
might explain the sensitivity reduction in the undersampled data.

Discussion
Dependence on the sampling pattern

Our simulation results showed that patterns of Gaussian and ran-
dom sampling with full sampling of some center k-space lines outper-
form the fully random sampling pattern. Note that most of the high
magnitude data points reside around the low k-space region, so the
SNR penalty is more significant when skipping k-space data here. How-
ever, a greater acquisition of k-space center lines will bias the recon-
struction toward the down-sampled low frequency component and
will result in a blurring of the activation foci. Therefore, a balance be-
tween the center and edge k-space line acquisitions is necessary to op-
timize the performance of CS-fMRI data reconstruction, which appears
to be the case for both the Gaussian and Rand + C6 patterns employed
in our experiments. Also, the k-t FOCUSS algorithm is a re-weighted
norm algorithm, so the convergence speed depends on the initial esti-
mate. The Gaussian and Rand + C6 patterns can provide a reasonable,
low resolution reconstruction that accelerates the convergence of k-t
FOCUSS.

CS reconstruction algorithm and temporal correlation
Although no periodicity is present in the hemodynamic responses of

the single trial, k-t FOCUSS with FT can still recover activation maps
with improved sensitivity from undersampled k-space data. A plausible

Full R=2

-10 P 10
t-value

Fig. 8. EPI-based fMRI maps of two rats responding to forepaw stimulation obtained from block-designed data with full and Rand + C6 (R = 2) sampling patterns. Color maps were over-

laid on the corresponding baseline EPI images.
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explanation is that, due to the relatively slow hemodynamic response
compared to the image acquisition rate (1/TR), FT of the time course
has large coefficients concentrating mostly in the low frequency range
and, thus, FT can still serve as an effective sparsifying transform.

One could be concerned that better temporal resolution could po-
tentially increase temporal correlation. Our interest for statistical analy-
sis is on the long range correlation which makes the structure of the V
matrix less diagonal. The reason that the long range correlation is
more important than the frame-wise correlation is that it reduces the
EDF (Friston et al., 2011). As discussed in the Statistical analysis section,
it is well known that the reduced EDF increases the threshold of the
t-statistic for the same p-value, which makes the t-test less sensitive
(Friston et al,, 2011).

We believe that the long range correlation does not increase in CS
due to the following reasons. First, as the acceleration factor increases,
the temporal resolution is improved. Some common sources of noise
that can introduce serial correlations, like hardware-related low-
frequency drifts, oscillatory fluctuations from respiration and cardiac
pulsation, and residual movement artifacts not accounted for by image
registration (Boynton et al., 1996; Friston et al., 1994; Weisskoff et al.,
1993; Woolrich et al., 2001), can be reduced by improving the temporal
resolution. Second, the CS reconstruction algorithm itself exploits the
temporal redundancy to improve the reconstruction results. More spe-
cifically, the k-t FOCUSS with KLT exploits the sparsity in the Karhunen-
Loeve transform (KLT) domain, which is known as the best de-correlator
(Jain, 1989). Hence, the reweighted norm procedure suppresses the po-
tential correlation in the background areas, which may result in the re-
duction of serial correlation. Consequently, the reduction of the serial
correlation increases the EDF, which makes the statistical test more effi-
cient. Reduction of the temporal correlation is another reason to justify
the usefulness of CS-fMRL

Increased false negative changes (FPF) are sometimes observed in
the experimental CS-fMRI maps (Figs. 5 and 6), which might compro-
mise the sensitivity gain offered by CS-fMRI. Interestingly, the false ac-
tivation appears less severe in KLT maps in Fig. 5. In addition, such
increased false activations are absent in simulated CS-fMRI maps in
Fig. 2. The origin of the increased FPF in experimental maps may be re-
lated to the presence of baseline drifts in the experimental data that
were also non-periodic and, thus, can be better estimated with KLT.
However, this phenomenon requires further investigation.

Discrepancy of sensitivity increase in S1 and OB

Undersampling leads to a large increase in the number of activated
voxels in OB for a single-trial block paradigm, while, in S1, no obvious
sensitivity increase is observed with undersampling. This difference
may be explained by the CNR differences between the S1 and OB fMRI
studies. According to Fig. 4C-D, the sensitivity gain by CS is only notice-
able when CNR is <0.5. Experimental CNR is 1.2 in S1 and 0.3 for
OB, which can explain the differential functional sensitivity gains. We
note that the CNR threshold for better performance with CS depends
on the number of trials and stimulation duration. Although no sensitiv-
ity gain is observed with CS in our study for CNR >1 due to the already
very high sensitivity of the fully sampled data, t-values increase with
CS-fMRI compared to full sampling at all CNRs (Figs. 2 and 5). In
addition, the sensitivity gain could increase when a smaller number of
trials or shorter stimulation durations are used, even at CNR > 1.
Under such experimental conditions, CS-fMRI can still provide sensitiv-
ity enhancement.

Furthermore, the increased sensitivity in OB CS-fMRI is unlikely an
artifact of k-t FOCUSS reconstruction. First, our simulation results dem-
onstrated that no increased false positive rates are introduced by
undersampling for k-t FOCUSS reconstruction. Second, although the
true activated area is not known a priori for in vivo study, the CS-fMRI
activation maps are similar to those obtained from fully sampled data
with a large number of trials (see Fig. 6 and Poplawsky and Kim

(2014)). Third, the CS-fMRI activation patterns are consistent with ear-
lier glucose uptake measurements using the same odor (Johnson et al.,
1998; Sharp et al., 1977).

GRE vs. EPI

We found a large increase in sensitivity when applying CS to the GRE
sequence, consistent with our simulation results. However, there ap-
pears to be no sensitivity gain when CS is applied to the EPI sequence.
This difference can be explained by the difference in CNRs and by the
additional noises introduced by the random sampling in the EPI se-
quence, which is absent in the GRE sequence. First, CNR is >2.0 for
fully-sampled, two-shot EPI data (Table 3), but 0.3 to 1.2 for GRE data
(Table 2). The sensitivity gain by CS is minimal when CNR > 1 (see
Fig. 4C-D). Hence, the advantages of CS-fMRI may not be as pronounced
for EPI sequences with large CNR. Second, the temporal noise for images
reconstructed from the undersampled EPI data is larger than for the
fully sampled data (Table 3). However, the noise levels for images re-
constructed from the undersampled GRE and simulated data were
much lower than those reconstructed from the fully sampled data
(Table 2 and Figs. 4A-B). Thus, such additional increases in noise that
are unique to EPI reduce the potential sensitivity gain offered by CS.

There are several possible sources of the temporal noise increases in
undersampled EPI data. First, imperfections of PE blips can introduce er-
rors in the ky values. Since the sampling pattern varies from image to
image, such errors are image-dependent and introduce additional tem-
poral fluctuations in the reconstructed images. In comparison, these im-
perfections and resulting errors in ky values remain constant in the
regular, fully-sampled EPI and in both undersampled and regular GRE
sequences. A second source of error in the undersampled EPI sequence
is the mismatch between the odd and even echoes, which may not be
completely corrected by the reference scans acquired at the beginning
of each scan. In regular EPI, such mismatches produce the well-known
N/2 ghosting artifact and remains constant across images. However, in
the undersampled EP], a k-space line at a certain ky value is randomly
encoded by either an odd or even echo, depending on the sampling pat-
tern at that time point. Therefore, additional temporal fluctuations are
introduced. Third, off-resonance, due to local field inhomogeneities,
produces a constant image shift along the phase-encoding direction
with the regular EPI sequence as a result of off-resonance-induced
phase accumulation that linearly depends on ky. However, when ran-
dom undersampling is applied, the phase accumulation becomes an ir-
regular function of ky, which may result in blurring and a shift of the
image intensities. Thus, the image to image variation of this effect intro-
duces additional temporal noise to the affected image regions. Fourth,
because of a random change in TE among the images, the image inten-
sity would vary due to the T decay. Assuming a T3 value of 27 ms, as
is typically found in the in vivo rat brain at 9.4 T (Kim and Kim, 2011),
the TE variation of 1 ms in our sequence would introduce nearly a 4%
signal fluctuation. This fluctuation can be reduced if sampling patterns
with a constant TE are used, such as measuring the same number of ky
values before measuring k, = 0 for all images.

Relevance to human sparsely sampled fMRI studies

EPI is a common imaging sequence for human fMRI studies. Due to
the availability of conventional acceleration techniques, such as parallel
imaging and multi-band excitation, on human scanners, the combina-
tion of EPI with these techniques allows sufficient temporal resolution
for measuring hemodynamic responses. The large increase of noise in
CS EPI data would reduce or eliminate the potential sensitivity gain of-
fered by further increased temporal resolution with CS. However, as
demonstrated in Jung and Ye (2009), if the additional noises are con-
trolled during accelerated acquisition, CS-fMRI may be a useful tool
for EPI-fMRI. Therefore, novel techniques to reduce the temporal
noise from irregular sampling need to be investigated further to validate
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the efficacy of CS-fMRI for human study. On the other hand, the GRE se-
quence may still be useful for fMRI of human brain regions with large By
field inhomogeneities, such as the medial temporal lobe, orbital frontal
cortex, and olfactory bulb (Ojemann et al., 1997; Olman et al., 2009),
where CS can be applied in combination with the other acceleration
techniques for increased temporal resolution and sensitivity, as demon-
strated in a recent dynamic contrast enhanced MRI study (Zhang et al.,
2013). Therefore, GRE based CS-fMRI can be directly used for human
brain study as an extension of this work.

Several studies have demonstrated the feasibility of sparsely sampled
fMRI with reduction factors up to R = 5 (Holland et al., 2013; Jeromin
et al,, 2012; Jung and Ye, 2009; Lam et al., 2013; Lu and Vaswani, 2011;
Nguyen and Glover, 2013). Except in Nguyen and Glover (2013), most
of the studies exploited retrospectively undersampled data and/or had
a fixed TR at all reduction factors. Therefore, undersampling did not
translate to an increased number of images or an increased sensitivity
for the same experimental durations in these studies. In Nguyen and
Glover (2013), a variable density spiral sequence was implemented
with R = 4, which resulted in an increased statistical power compared
to the fully sampled data, consistent with our results. k-t FOCUSS was
also examined and was found to introduce high-frequency ringing arti-
facts, which are not observed in our study. This discrepancy may be ex-
plained by the absence of random variations of the k-space sampling
pattern across images in Nguyen and Glover (2013), which is an impor-
tant prerequisite for the application of k-t FOCUSS.

Conclusions

This paper investigated the performances of CS-fMRI using block-
design stimulation experiments for rat models using 9.4-T MRI. Specifi-
cally, accelerated acquisition and CS-reconstruction using k-t FOCUSS
were studied extensively using GRE and EPI pulse sequences with real
k-space undersampling and rigorous statistical analysis. Despite the po-
tential concerns about CS-fMRI, our results showed that the improved
temporal resolution from CS-fMRI reduces the serial correlation in the
fMRI image and improves the statistical performance of activation de-
tection. We also found that center-weighted random sampling patterns
were preferred over the purely random sampling patterns. Similarly,
CS—fMRI should also be useful for rapid event-related fMRI experiments.
In summary, our results confirm that CS-fMRI is a viable tool that has a
great potential to improve the performance of fMRI studies, although
the potential presence of increased FPF should be carefully evaluated.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.01.045.
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